Structure-dependent optoelectronic properties of perylene, di-indenoperylene (DIP) isolated molecule and DIP molecular crystal

نویسندگان

  • Mazmira Mohamad
  • Rashid Ahmed
  • Amirudin Shaari
  • Souraya Goumri-Said
چکیده

Theoretical simulations were designed by first principles approach of density functional theory to investigate the structural and optoelectronic properties of different structural classes of perylene; isolated perylene, diindeno[1,2,3-cd:1',2',3'-lm]perylene (DIP) molecule and DIP molecular crystal. The presence of molecular interactions in DIP crystal proved its structure-dependent behaviours. The herringbone molecular arrangement of DIP crystal has influenced the electronic properties by triggering the intermolecular interactions that reduced the energy gaps between HOMO and LUMO of the crystal. Strong hybridization resulting from dense charges population near zero Fermi energy has pushed valence band maxima in the density of states of all perylene structures to higher energies. Under small energy input, charges are transferred continuously as observed in the spectra of conductivity and dielectric. The existence of strong absorption intensities are consistent with the former works and supported by the obtained polarized reflectivity and loss spectra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One dimensional molecular dipole chain arrays on graphite via nanoscale phase separation.

Molecular dipole chain arrays of chloroaluminium phthalocyanine (ClAlPc) on the graphite surface have been investigated by scanning tunneling microscopy. The inter-chain spacing can be tuned by the co-adsorption of di-indenoperylene (DIP) via nanoscale phase separation.

متن کامل

Linking Precursor Alterations to Nanoscale Structure and Optical Transparency in Polymer Assisted Fast-Rate Dip-Coating of Vanadium Oxide Thin Films

Solution processed metal oxide thin films are important for modern optoelectronic devices ranging from thin film transistors to photovoltaics and for functional optical coatings. Solution processed techniques such as dip-coating, allow thin films to be rapidly deposited over a large range of surfaces including curved, flexible or plastic substrates without extensive processing of comparative va...

متن کامل

STUDY OF ANNEALING TEMPERATURE VARIATION ON THE STRUCTURAL PROPERTIES OF DIP-COATED TiO2-SiO2 NANOSTRUCTURED FILMS

Abstract:In the present research, SiO2–TiO2 nanostructure films were successfully prepared on windshields using the sol–gel technique for photocatalytic applications. To prevent the thermal diffusion of the sodium ions from the glass to TiO2 films, the SiO2 layer was pre-coated on the glass by the sol–gel method. The substrates were dipped in the sol and withdrawn with the speed of 6cm/min-1 to...

متن کامل

Fusion proteins with anticoagulant and fibrinolytic properties: functional studies and structural considerations.

In an effort to combine the benefits of fibrinolytics, such as staphylokinase, with those of thrombin inhibitors for the prevention of vessel reocclusion after vascular injury, we have produced several chimeric proteins with plasminogen-activating and thrombin-inhibiting properties. Fusion proteins were constructed consisting of the modules staphylokinase (Sak), the factor Xa cleavage site, and...

متن کامل

DIP (mDia interacting protein) is a key molecule regulating Rho and Rac in a Src-dependent manner.

Cell movement is driven by the coordinated regulation of cytoskeletal reorganization through Rho GTPases downstream of integrin and growth-factor receptor signaling. We have reported that mDia, a target protein of Rho, interacts with Src and DIP. Here we show that DIP binds to p190RhoGAP and Vav2, and that DIP is phosphorylated by Src and mediates the phosphorylation of p190RhoGAP and Vav2 upon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2017